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Nonlinear interactive effects in a bubbly cloud have been studied by investigating the 
frequency response of a bubble layer bounded by a wall oscillating normal to itself. 
Averaged equations of motion are used and the Rayleigh-Plesset equation is used to 
include the bubble dynamics. Energy dissipation due to viscous and thermal effects are 
included while relative motion between the two phases, liquid compressibility and 
viscous dissipation in the liquid have been ignored. First, a fourier analysis of the 
Rayleigh-Plesset equation is used to obtain an approximate solution for the nonlinear 
response of a single bubble in an infinite fluid. This is used in an approximate 
calculation of the nonlinear frequency response of a bubble layer. Finite thickness of 
the bubble layer results in characteristic natural frequencies of the layer all of which are 
less than the natural frequency of a single bubble. The presence of bubbles of different 
sizes in the layer causes a phenomenon called harmonic cascading. This phenomenon 
consists of a large response at twice the excitation frequency when the mixture contains 
bubbles with a natural frequency equal to twice the excitation frequency. The details 
of these results along with most important limitations of theory are presented. 

1. Introduction 
The purpose of this research is to gain some understanding of the global effects of 

bubble dynamics in the fluid mechanics of bubbly flows. At the most basic level, 
bubble-bubble interactions occur because the pressure changes generate rapid bubble 
volume changes which cause accelerating velocity fields which effect the pressure 
distribution in the flow. Such an interaction in a layer of gaseous bubbles is considered 
in the present work. These gaseous bubbles may be generated by the collapse of 
vaporous bubbles in cavitating flows and may determine the final phase of noise 
emission in such flows occurring in ship propellers, hydrofoils and turbomachines. 
Understanding of such flows is also important for acoustical techniques of flow 
measurement. Also, gas bubble oscillations precede the development of vaporous 
cavitation and the results from present work are aimed at an understanding of this 
stage. 

Traditionally, bubble flows have been studied using single-bubble dynamics and 
assuming no interaction among the bubbles in the flow field. Such an approach ignores 
the interactive effects that the bubble dynamics have on the global pressure distribution 
in the flow field and is accurate only in the case of extremely dilute bubble 
concentrations. The experimental results of Arakeri & Shanmuganathan (1 985) haye 
shown that noise produced by travelling bubble cavitation can be modified by 
interactive effects at higher bubble concentrations. Marboe, Billet & Thompson (1986) 
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measured noise spectra in travelling bubble cavitation and observed lower frequencies 
than can be explained on the basis of single-bubble theories. Both papers indicate 
interactive effects occurring for flows with large concentrations of bubbles. To model 
these effects researchers have used continuum models incorporating bubble dynamics 
to analyse interactive effects. d’Agostino & Brennen (1988) and Omta (1987) found 
that the characteristic natural frequencies of a spherical cloud of bubbles can be much 
smaller than the natural frequency of a single bubble. However, these recent analyses 
use linearized models of the bubble dynamics and the flow. It is well known that the 
dynamics of a bubble can be quite nonlinear (Prosperetti 1974, 1975) which in 
combination with nonlinear convective effects may produce significant nonlinear 
effects in bubbly flows. The objective of the present research is to understand these 
nonlinear effects by studying an analytically amenable model problem. 

The nonlinear dynamics in the growth and collapse of a single bubble have been 
studied for a long time (e.g. Plesset & Prosperetti 1977). Early studies, based on space- 
averaged equations, did not include bubble dynamic effects, but treated the bubbly 
mixture as an equivalent compressible homogeneous medium (Tangren, Dodge & 
Seifert 1949). Among the first to focus on the dynamics of bubble clusters was van 
Wijngaarden (1964) who analysed the collapse of a large number of bubbles next to a 
flat wall and found considerable increase in the pressure at the wall as a result of the 
interactive effects. Biesheuvel & van Wijngaarden (1984) used ensemble and volume 
averaging of the conservation equations for each phase to develop more general 
equivalent flow models of dispersed two-phase mixtures, including the phenomena of 
bubble dynamics, relative motion and liquid compressibility. Most of the subsequent 
research efforts are based on these equations. 

Msrch (1980, 1982) considered the collapse of a spherical bubble cloud assuming 
that the pressure increase would lead to shock formation at the cloud boundary and 
that the shock would propagate inward and completely annihilate bubbles in its path. 
This model did not include individual bubble dynamics and predicted infinite pressure 
and infinite collapse velocities as the radius approached zero. In a subsequent paper 
Hansson, Kedrinskii & Marrch (1982) constructed a model using a continuum 
mechanics approach and used the Rayleigh-Plesset equation to model the bubble 
dynamics. Chahine (1982) developed a method using matched asymptotic expansions. 
This model assumes instantaneous transmission of ambient conditions to the bubbles 
and thus neglects the compressibility of the bubble cloud. It was found that because of 
interactive effects in the cloud, the larger the number of bubbles in the cloud, the more 
delayed and violent is the implosion and thus larger pressures are generated. The 
method is limited to low-void-fraction flows and to a small number of bubbles in a 
specified configuration. Chahine (1983) also developed a model using a continuum 
mechanics approach and first-order gradient theory. Recently Omta (1987) has 
obtained analytical solutions for small-amplitude oscillations and numerical solutions 
for large amplitudes. Omta linearized the Biesheuvel-van Wijngaarden (1984) 
equations and obtained solutions under a number of simplifying assumptions. The 
bubble cloud was found to possess characteristic natural frequencies which depended 
upon the void fraction with the lowest characteristic natural frequency dominating the 
cloud behaviour. d’Agostino & Brennen (1988) also solved for the linearized dynamics 
of spherical bubble clouds using a continuum mechanism model with bubble dynamics 
under more general conditions. This model includes various dissipative mechanisms 
including the relative motion between phases. The conclusions were found to be 
essentially the same as those of Omta (1987). d’Agostino, Brennen & Acosta (1988) also 
solved for the linearized dynamics of the flow of bubbly mixture over slender surfaces. 



Some nonlinear interactive eflects in bubbly clouds 567 

Recently Birnir & Smereka (1990) have carried out numerical solutions for bubble 
clouds and investigated the solutions using the techniques used to study dynamical 
systems. They found that the bubble radius, the flow velocity and pressure were 
bounded and the cloud was seen to possess natural frequencies. Periodic solutions were 
found to be stable for weak excitation. It is clear that much remains to be learnt about 
the highly nonlinear dynamics of bubbles and bubble clouds. 

The objective of present work is to develop a methodology for handling nonlinear 
terms and to obtain nonlinear solutions by studying the dynamics of a bubbly liquid 
next to a flat wall which oscillates normal to its own plane. The case of a layer of 
identical bubbles has been examined. Also, a semi-infinite layer with a given bubble size 
distribution has been examined and reveals the new phenomena of harmonic cascading 
in such clouds. The purpose is to obtain a qualitative understanding of the various 
mechanisms of frequency dispersion in the bubbly two-phase mixtures. 

2. Some typical applications and values 
Clouds of gas bubbles occur in a variety of technological situations. These are 

generated by collapsing bubbles in vaporous cavitation (Blake, Wolpert & Geib 1977; 
Ceccio & Brennen 1991) and the dynamics of these clouds of small gas bubbles are 
clearly important. Gas bubble oscillations may precede onset of vaporous cloud 
cavitation as bubbles acquire critical size through equilibrium oscillation growth 
(Merrch 1989). Though the process of rectified diffusion for such a growth is not 
included in the present model, the present analysis can be applied to bubble clouds at 
timescales finer than that required for bubble growth through rectified gaseous 
diffusion. The typical data used for illustration of the present analysis have been 
selected with these physical situations in mind. 

A number of researchers have measured the size of free-stream nuclei (Gates & 
Acosta 1978) and cavitation bubbles (Maeda, Yamaguchi & Kato 1991). Typical nuclei 
range in size from 10 to 150 pm; the size distribution can usually be approximated by 

r(R,) = N*/RY,  (1) 
where q(R,)dR, is the number of nuclei per unit liquid volume (in m-3) with 
equilibrium radii between R, and R, + dR, (in m). A distribution of the form given by 
(1) has been used to describe the size distribution of free-stream nuclei in sea water and 
various water tunnel facilities with N z 10-5m-i and m z 3.5 (Brennen & Ceccio 1989). 
The bubble size distribution in cavitation clouds (Maeda et al. 1991) can also be 
approximately described by (1) with suitable values of N* and m. 

The void fraction values due to free-stream nuclei are extremely small. Though the 
void fraction of a cavitation cloud is larger than that of free stream, it is still small at 
approximately 0.03 % (Maeda et al. 1991). No measurements of the void fraction of a 
cloud resulting from the breakup of a collapsing cavitation bubble exist. For the 
purpose of illustrating the present results, void fractions were estimated from the 
experiments of Arakeri & Shanmuganathan (1985). Table 1 presents two sets of typical 
data obtained by these means. The fluid has been chosen to be water at room 
temperature (20 "C). A bubble subject to periodic excitation oscillates with a value of 
the polytropic constant, k, between 1 and y (Plesset & Hsieh 1960) and so, for 
illustrative purposes, the value of the polytropic constant, k, has been chosen to be 1. 
The values in the water tunnel set are typical of cavitation nuclei in a water tunnel 
where the static pressure has been lowered. Similarly, the values in the ocean set 
represent conditions in flows near the ocean surface at atmospheric conditions. When 
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PmLl 10-5 wb 

Application (Pm) (Pa) k v / w ,  Rt S/pwE R: (rad/s) 
Water tunnel 14 13 146 1 0.01 0.10 5.2 
Ocean 20 101 325 1 0.0028 0.012 8.8 

Ro 

TABLE 1. Fluid and bubble parameters for the examples presented. 
These data are for water at 20 "C. 

a distribution of bubble sizes is used, the form given by (1) will be employed and a 
continuum of bubble sizes between 10 and 100 pm will be used. 

The present work is aimed at small-amplitude oscillation of gas bubbles. It is well 
known that bubbles which grow to a size larger than a critical size grow into vaporous 
bubbles and collapse violently. This threshold growth is given by (Flynn 1964, p. 88) 

[R/RoIw = (7.48Pgo/Pmo)', (2) 
where R, is the equilibrium bubble radius, 5, the permanent gas pressure in the bubble 
and P,, the far-field pressure at the equilibrium condition. Considering the values 
given in table 1, a bubble must grow to 4.6 times its equilibrium size for the water 
tunnel conditions and 7.1 times its equilibrium size for the ocean conditions before it 
grows explosively and then collapses violently like a vaporous bubble. Clearly, the 
small-amplitude oscillations at less than 100 YO change in the bubble size, presented 
here, are well within the gas bubble region. 

3. Nonlinear solution for a single bubble 
There exists a substantial body of literature on the nonlinear dynamics of a single 

bubble in an infinite fluid (Plesset & Prosperetti 1977). In the present context it is 
appropriate to note that Eller & Flynn (1969) solved the problem of subharmonics of 
order one-half using a perturbation procedure and that Prosperetti (1974, 1975) 
generated nonlinear analytical solutions for subharmonics and harmonics of various 
orders using a perturbation method. Parlitz et a/. (1990) have studied extensively the 
dynamics of a single bubble. In the present work it is necessary to construct the very 
simplest nonlinear solution of the Rayleigh-Plesset equation for a single bubble. Later 
this will be used as a building block for the problem of many bubbles interacting in a 
flow. The bubble is assumed to be spherical and to contain water vapour and residual 
permanent gas. The bubble interior is assumed to be uniform with constant vapour 
pressure, P,. The permanent gas in the bubble is assumed to behave polytropically with 
an index, k,  between 1 and y (Plesset & Hsieh 1960). The liquid compressibility is only 
included in the radiation damping and this is done by including it in the effective 
viscosity used for the bubble dynamics (Devin 195'9; Prosperetti 1977). Bubble growth 
due to rectified diffusion has been ignored since that takes place on a much slower 
timescale than the natural cycle of the bubble (Hsieh & Plesset 1961). With these 
assumptions the Rayleigh-Plesset equation describing the bubble dynamics becomes 

Pv-P,(t) P Ro 3k 
P +&(-) P R  (3) 

In the present solution a Fourier series expansion is used and terms up to second order 
are retained in order to examine the corrections to the linear solution. The bubble 
radius, R(t),  and the pressure at infinity, P,(t), are expanded in the form 
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R = R, + Re (R, einbt), 
n=1 

N 
-- Pm(t) - P, + C Re (Pa ein8), 

P n=l 

(4) 

where Po = Pm0/p with Pm0 being far-field equilibrium pressure in the liquid; P, and R, 
are complex quantities, and the frequencies nS, n = 1, N represent a discretization of 
the frequency domain. These expansions are substituted into (3) and all terms of third 
or higher order in RJR, are neglected in order to extract the simplest nonlinear effects. 
Finally, coefficients of eina on both sides of the simplified equation are equated to yield 
the following relation for P, and R,: 

where the overbar denotes complex conjugate and the bubble natural frequency, wb is 
given by 

and A@),  Pl(n,j) and pz(n,j) are defined as 

(9) 
3k+l  3k-1 S 16' 21, 6 

( i) wbR:wb 
+-3(n-j) n+- +i-- (n -3% P1(n,J = 4+-- 2 pwERi 2wb 

(10) 
s 1 62 2v nS 

+ ( 3 k -  1)- + --? (n2 - nj-jz) + i- - . 3k+ 1 
po:Ri 20,  O b  % wb 

and Pzhj )  = 2 

Using a Newton-Raphson scheme, (6) is solved iteratively for R,/Ro given P,, the fluid 
properties and individual bubble characteristics. It was seen numerically that if there 
is a single excitation frequency, of, then the only non-zero components of the bubble 
oscillation, R,, will occur at harmonics of that single excitation frequency. It is also 
seen that the response R,/Ro decays with increase in the order of the harmonic and is 
negligible (amplitude 4 at harmonics of order higher than 50. Thus calculating 
the response up to 50 harmonics was considered sufficient. It is also clear from (9) and 
(10) that Pl(n,j] and Pz(n,j] are functions of nS/o, andjln. Furthermore, note from (6) 
that for a single excitation frequency, the only coefficients pl(n,j) and pz(n,j) that enter 
the calculations are those for whichj and n take values corresponding to harmonics of 
the excitation frequency. Consequently the only values of n8/ob andj/n which enter the 
calculations are those which are ratios of an excitation frequency harmonic to the 
natural frequency of the bubble or two excitation frequency harmonics. Hence, despite 
the explicit appearance of S, the results of the calculation are independent of this 
parameter used in discritizing the frequency domain. Finally, note also that the 
pressure perturbation coefficients, P,, occur in (6) only in linear form and thus can be 
large without introducing error into the solution. However, the analysis is valid only 
for (R,/R,I 4 1. This defines the extent of the weak nonlinear effects which are 
examined here and indirectly implies an upper limit on the magnitude of P,/wE RE. 

19 FLM 253 
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FIGURE 1. Radius, R(7)/R0, is plotted against the non-dimensional time, 7 = ob t ,  for a single bubble 
for (a) P, f o: Ri = 0.04 and (b) 0.08. w b / o f  = 3.0, and v f wb R: and S fpw: R: are for the water tunnel 
conditions. -, The numerical solution; ----, the approximate analytical solution. 

For illustrative purposes, we select the values of the parameters v/wb Ri and 
S/pwE Ri for the water tunnel conditions listed in the table 1. We chose to consider a 
single bubble subjected to an oscillating pressure at infinity containing a single 
frequency, wf, such that wb/wf = 3.0 for several values of P,/wEPi. Results obtained 
from (6)  are compared to a numerical integration of the Rayleigh-Plesset equation 
(which uses a fourth-order Runge-Kutta scheme) in figure 1 for P,/w; Ri = 0.04 and 
0.08. It can be seen that the present approximate analysis works very well for the 
smaller amplitude and begins to show some discrepancies at larger amplitude. 

It was previously noted that (6) has a non-zero solution only at the harmonics of the 
excitation frequency. However, at present it is impossible to prove the uniqueness of 
the solution for nonlinear equations such as (6) .  The agreement demonstrated in figure 
1 adds some confidence that the present solutions are unique. 

A comparison of the spectra of [ 1 - R(t)/R,] is made in figure 2 for the case in which 
the Pn/w,” Ri and wb/wf values are 0.08 and 6 respectively. It can be seen that the present 
approximate solution agrees well with the numerical integration for frequencies at 
which the magnitude is significant. This indicates that most important features of the 
oscillation at weakly nonlinear conditions are incorporated in our approximate 
solution. Note that the radius oscillations occur at harmonics of the frequency of the 
pressure oscillation, of. The excitation frequency, wf ,  is varied from 0,/100 to 2wb for 
the purpose of calculating the frequency response of the bubble. Figure 3 shows 
the frequency response of a single bubble subjected to a pressure oscillation with a 
Pn/wE Ri value of 0.02. The lines labelled [ 11 are the magnitudes of the response at the 
fundamental excitation frequency wf so that, in this case, the abscissa represents w f / o b .  
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FIGURE 2. Comparison of the spectra of [l - R(T)/R,] obtained for a single bubble from numerical 
integration of the Rayleigh-Plesset equation (-) and the present approximate (----) analysis. 
PJw; Ri = 0.08, wJwf = 6.0, and v / o b  Ri and Slpw; Ri are for the water tunnel conditions. 
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FIGURE 3. The frequency response of a single bubble: JR,I/R, is plotted against the frequency ratio, 
nSlo,, for the first five harmonics. Palo,” = 0.02, and vlwb are for the water tunnel 
conditions. The numbers in square brackets denote the order of the harmonic, and wb the bubble 
natural frequency. 

and S/pw; 

The lines labelled [2] represent the magnitudes of the response at twice the excitation 
frequency and in this case the abscissa represents 2wf/wb. A line labelled [m] represents 
the magnitude of the response at m times the excitation frequency and in this case the 
abscissa represents the frequency, mwf/wb. Thus, all the harmonics are plotted against 

19-2 
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the actual reduced frequency, w / w b ,  at which they occur. In viewing these results it 
should be recognized that those harmonics with magnitudes below a certain level are 
of dubious significance since higher-order nonlinearities could markedly alter those 
results. It can be seen that wb is the dominant frequency in the radius oscillation as 
would be expected from the linear analysis. 

Eller & Flynn (1969) observed that for pressure oscillations with amplitude larger 
than a threshold value, the bubble radius oscillation will contain a subharmonic of 
order one-half. This an also be seen in Lauterborn’s (1976) numerical calculation of the 
frequency response of a single bubble and in the third-order perturbation solution of 
Prosperetti (1974, 1975). The present solution does not give rise to subharmonics in the 
domain of its validity, i.e. IR,/R,,I < 1. However, subharmonics are generated at 
stronger nonlinearities than considered in this paper and are considered as an indicator 
of the onset of vaporous cavitation (Vaughn 1968). Thus, the absence of subharmonics 
from our approximate solution does not invalidate our analysis when applied to 
weakly nonlinear oscillation of gaseous bubbles. 

More accurate nonlinear solutions than the one described above (for example 
Prosperetti 1974, 1975) exist and have been reported in the literature. The value of 
present solution lies in its simplicity and the feasibility of incorporating it in an analysis 
of the collective response of a cloud of bubbles. 

4. A bubble layer of finite thickness 
The specific problem addressed in this paper is shown schematically in figure 4. 

Liquid containing bubbles is bounded by a flat wall which oscillates in a direction 
normal to itself at a frequency, or The resulting flow is assumed to be a function of 
x and t alone. A number of simplifying assumptions are used in order to obtain a 
soluble set of equations. The volume of liquid involved in condensation and 
evaporation during bubble oscillation has been ignored; this is reasonable in view of 
the large difference in the densities of the liquid and the vapour phases. The liquid has 
been assumed to be incompressible and the relative motion between the phases has 
been ignored. Both were found by d’Agostino & Brennen (1988) to have very little 
effect on important features such as the natural frequencies of the flow. The most 
important contribution of these effects is the damping that they cause at the resonant 
frequencies. This can be incorporated in the present solution by taking an appropriate 
value of the effective viscosity in place of the liquid viscosity used in the 
Rayleigh-Plesset equation. 

The breakup and coalescence of bubbles are assumed not to occur for flows under 
weakly nonlinear excitation. Since relative motion has been neglected, the number of 
bubbles per unit liquid volume, y’, will remain constant under these assumptions; 7’ is 
also assumed to be piecewise uniform in the cases considered. Under these simplifying 
assumptions, the continuity and the momentum equations can be written in the form 

The equations (11) and (12) along with the Rayleigh-Plesset equation (3) relate the 
bubble size, the pressure in the flow and the flow velocity. Our analysis is used to obtain 
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FIGURE 4. Schematic of the oscillating wall problem. 

a single equation governing pressure oscillations in the layer. The solution to the 
problem represented by (1 l), (12) and (3) is obtained in Lagrangian coordinates, Xand 
T, for which the above equations become 

and 

au a7 ax (1 +q’7)- = q’-- ax aTaX 

__-  au ax 1 aP - -(1 +q’T)-- aTax pax .  

The Lagrangian coordinates simplify the handling of 
velocity u can be written as 

u = aX/aT. 

(14) 

convective nonlinearity. The 

(15) 
Consistent with the structure of the solution sought, the relationship between the 
Lagrangian and the Eulerian coordinates, X and x, is written in the form 

N 
x = X +  C Re ( X n ( X )  ein81r), 

n=l 

and the bubble volume, 7, and pressure, P, are expressed by the expansions 
N 

7 = T~ + C Re (7,(X) einbT) 
n=l 

and 
N P 

- = P,+ C Re(Pn(X)einsT). 
P ? L = l  

The expansions (16), (17), (18) and (15) are substituted into (13) and coefficients of 
einsT equated and some more simplifications are carried out to obtain 
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(1 -ao) n2S2Xn + O(a:). (20) 
d P  12= 
dX and 

The simple algebraic relation between the bubble radius, R, and the bubble volume, 7, 
namely 7 = $nR3 leads to 

At this point we recall the approximate solution of the Rayleigh-Plesset equation given 
by (6) which may be written as 

where 

and pl(n, j )  and P2(n,j9 are given by (9) and (10). Using (19), (20), (21) and (22), the 
following equation governing the pressure oscillation in the bubble layer can be 
obtained 

where the parameter A, is given by 

The solution of (24) (accurate up to second order) for a bubble layer of thickness I is 
as follows: 



where 
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r(n, j )  = 4 9  -Pz(n,j), (32) 
and further details are included in Kumar (1991). In the linear approximation, the 
radius response may be written as 

CRnlRollinear = an ~ X P  { - An XI&} + b n  ~ X P  {An(X- O/RJ (33) 
and we can proceed to evaluate f n l ( X )  from (23) by noting that it is consistent with the 
level of approximation to use (33) in the quadratic terms. Then the amplitude of radius 
oscillation, R,/R,, (accurate up to second order) can be written as 

The solution (26) contains unknowns a, and b, which must be solved from the 
boundary conditions. The boundary conditions to be applied are (i) the given wall 
oscillation amplitude at x = 0 and (ii) the motion of the fluid at the edge of the layer 
is zero. Since the incompressible liquid outside the layer is infinite in extent, it must 
always be at rest at the lengthscales required for continuum modelling. The boundary 
conditions are applied to the following equation obtained from using (26) in (20): 

4a x -- - - - an exp { - A, X /  R,) + b, exp {An X /  R,) 
301, Ro 

It-1 

C. [ - Kl(n,A aj an-j 
j=1  

{ - (A, + X / R J  

- 4 n , j )  ai b,, exp { - Aj X / R ,  + An$- WR,} 
+ K & , J ~  bj a,-, exp (Aj(X- O/Ro - An-, XIR,} 

+ K ~ ( ~ , J I  bj bn-j exp + An-,) ( X -  O/&JI 

,=1 
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The constants and K ~ - K ~  can be evaluated using their definitions and given fluid 
and bubble properties. Thus applying the boundary conditions, a set of nonlinear 
algebraic equations is obtained for a,  and b,. These are solved using a Newton- 
Raphson scheme. Since (35) is similar to (6), it can be seen that the solution is 
independent of the way in which the frequency domain is discretized. Having 
calculated a, and b,, Pn/w% Rt can be calculated using (26) and RJR, obtained using 
(34) while using (33) and (23) to evaluatef,,(X). Also, both Pn/oE R: and R,/R, appear 
only at the harmonics of the frequency of wall oscillation, of: Thus the software may 
be written so as to evaluate only the non-zero response amplitudes, at the harmonics 
of excitation frequency. Calculation of up to 20 harmonics was found to be sufficient, 
harmonics of higher order being negligible. The frequency response of the bubbly layer 
was calculated by varying the wall oscillation frequency from wb/100 to 20, and the 
resulting amplitudes of P,/wi R: and RJR, are plotted as functions of the reduced 
frequency, n8/w in similar manner to that in figure 3. Calculation is carried out for two 
sets of values listed in table 1. A convenient reference case consists of water tunnel 
conditions plus a void fraction, a, of 0.02 and wall oscillation amplitude (Xn)/R,  of 
0.02. The ocean conditions are used to examine the effect of varying the viscous and 
surface tension parameters. 

It is known that presence of a lengthscale such as a finite thickness of the bubble 
layer results in characteristic natural frequencies of the bubble cloud (d’Agostino & 
Brennen 1988; Omta 1987). It has also been shown that the lowest characteristic 
natural frequency of the cloud, o1 dominates the frequency response (d’Agostino & 
Brennen 1988). Here, we shall explore the influence of weak nonlinear effects on these 
phenomena. 

It can be easily verified that the natural frequencies of such a bubble layer are given 
in the absence of damping by 

With damping, the natural frequencies of the cloud differ from the above values by 
only a small amount. A typical frequency response of a bubble cloud of finite thickness 
is shown in figure 5 where the water tunnel conditions (table 1) have been used. The 
amplitudes of harmonics above the fmt and the second have been omitted since they 
are negligible. The first harmonic is similar to that predicted by the linear solution. For 
both the pressure and the radius response, significant amplitudes of oscillation can be 
observed at the characteristic natural frequencies of the cloud with the response at the 
lowest cloud natural frequency being dominant. Note that the response at the 
characteristic natural frequencies close to 6Jb is overwhelmed by the response 
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FIGURE 5. The frequency response of a bubble layer of finite thickness: IR,I/R,(X= 0) and 
lPnl/w: R:(X = 0) are plotted against the frequency ratio, n8/w,, for first two harmonics (-, 
fundamental; ---, second). X,(O)/R, = 0.02, a, = 0.02, l /R ,  = 20, and v / w ,  Ri and S/pwi Ri are 
for the water tunnel conditions. 

modification due to the proximity of wb, making it impossible to distinguish the peaks 
at characteristic natural frequencies close to ob. Furthermore, the response at the 
second harmonic of the lowest characteristic natural frequency (at 2w,) is greater than 
the response of the fundamental at other natural frequencies (wz, w3, . . .) of the bubble 
cloud. The most significant frequency is the lowest natural frequency of the cloud and 
even weak nonlinear effects cause the harmonics of this frequency to dominate the 
other natural cloud frequencies. Since, the second harmonic response at 2w, is not 
highly damped, there remain some important high frequencies such as 2w, in the 
response and all high-frequency response cannot be ruled out. This is, perhaps, the 
most important nonlinear phenomenon to add to the conclusions of the linearized 
analysis of d’Agostino & Brennen (1988). Also, the pressure increases with excitation 
frequency for excitation frequencies larger than wb. This indicates that the oscillations 
are too fast to follow for the bubbles, which do not respond as quickly due to their 
virtual mass, and the whole bubble layer moves as a homogeneous medium in response 
to the oscillating wail. 

Following d’Agostino & Brennen (1988), we can consider the solution to be divided 
into three different regimes, namely: sub-resonant (0 < of < w,), trans-resonant 
(w, < wf  < wb) and super-resonant (wf > wb). The first harmonic of the radius oscillation 
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FIGURE 6. The frequency response of a bubble layer of finite thickness: (a) IRJR, and (b) 
l P n l / w ~ ~  for the fundamental harmonic are plotted against the frequency ratio, w,/o,, and the 
distance from the oscillating wall, X/Z, for the first harmonic. X,(0)/Ro = 0.02, a, = 0.02,Z/R0 = 20, 
and v / w ,  Ri and S/pw,2 R: are for the water tunnel conditions. 

and the pressure oscillation are shown as surface plots in figure 6 as functions of the 
frequency ratio, wf /wb  and distance from the wall, X/I so that we may illustrate the 
frequency response of the cloud away from the oscillating wall. In the cases of the sub- 
resonant and trans-resonant excitation, the amplitudes of oscillation form standing 
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FIGURE 7. The effect of a change in the thickness of the bubble layer, Z/Ro, on the fundamental 
harmonic: IR,l/R,,(X = 0) and IP,l/w,” Ri(X = 0) for the fundamental harmonic are plotted against 
the frequency ratio, wf/wb.  X,,(O)/R, = 0.02, cc0 = 0.02, and v /wb R: and S/pw,2 R: are for the water 
tunnel conditions. -, I/R, = 10; . . . * ,  20; ---, 50. 

wave patterns and the amplitudes decay slowly with distance from the wall. In the case 
of super-resonant excitation, the response is seen to rapidly decay with distance from 
the wall. 

Comparing the rapid decay of the response away from the centre of the spherical 
cloud (d’Agostino & Brennen 1988) with the present solution for sub-resonant and 
trans-resonant excitation, it appears that the strong decay at a distance from the cloud 
centre in the case of a spherical cloud is caused by attenuation due to spherical 
divergence. In other words, the response at the centre of the spherical cloud is much 
stronger than the response at the boundary of the cloud due to focusing of the 
spherically symmetric disturbance. Thus, for sub-resonant and trans-resonant 
excitations the magnitude of the response is determined by the geometry of the bubble 
cloud and the excitation. The bubbles have ample time to react to the excitation and 
the bubble dynamics significantly influence the response throughout the layer. In the 
case of the super-resonant excitation the response is seen to decay rapidly with the 
distance from the oscillating wall in the same way as it decayed rapidly with the 
distance from the boundary of a spherical cloud (d’Agostino & Brennen 1988). Thus, 
in the case of super-resonant excitation the response gets weaker with increasing 
distance from the source of excitation and the bubble dynamics do not play any 
significant role except in the dissipation of the input energy. 
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FIGURE 8. The frequency response of a semi-infinite layer: IR,I/R,(X = 0) and IP,l/o: Ri(X = 0) for 
the first two harmonics are plotted against the frequency ratio, n8/w, (-, fundamental; . . . ., 
second harmonic). X,(O)/R, = 0.03, uo = 0.02, and v / w ,  Ri and S/poi Ri are for the water tunnel 
conditions. 

The effect of variation in the thickness of the bubble layer, Z/&, for a given value 
of the void fraction will be examined next. Note that thickening the layer will increase 
the size of the frequency interval containing the natural frequencies of the layer, 
[q, . . ., wb], by lowering the lowest characteristic natural frequency, wl, Figure 7 
illustrates the changes in frequency response of the layer due to the increase in its 
thickness. It is clear that the change in the thickness of the layer does not influence the 
frequency response for super-resonant excitation and for excitation frequencies close 
to wb. The amplitude of oscillation is a maximum at the lowest cloud natural frequency, 
w,, in cases for which w1 is greater than 0 . 5 ~ ~ .  However, the amplitude of oscillation 
at w2 is greater than at wl in the case for which w1 is about 0 . 2 5 ~ ~ .  Thus, it appears that 
the amplitude of oscillation at a cloud natural frequency increases as that cloud natural 
frequency gets closer to about 0 . 5 ~ ~ .  The response at the second harmonic followed 
essentially the same pattern (Kumar 1991). When the cloud natural frequencies move 
to values much less than 0 . 5 ~ ~  with increase in the thickness of the layer, the amplitude 
of oscillation at these cloud natural frequencies decreases to the values given in the 
infinitely thick layer solution (figure 8). It can be noted from figure 8 that the pressure 
oscillation second harmonic at 2wb is almost the same as the fundamental harmonic at 
wb for the semi-infinite layer of identical bubbles. 

Turning to the effect of the void fraction, figure 9 presents results for several values 
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of a,. An increase in void fraction reduces the characteristic natural frequencies, as is 
clear from (40). Note that the amplitude of oscillation is reduced by an increase in the 
void fraction for excitation frequencies close to and greater than wb. Two other features 
of figure 9 are noteworthy. First, the amplitude of pressure oscillation at w1 is larger 
for the void fraction of 0.020 than for the void fraction of 0.005. A possible reason for 
this is the proximity of w1 to 0 . 5 ~ ~  for the void fraction of 0.020. Second, the amplitude 
of pressure oscillation at w, is larger than that at w2 for the void fraction of 0.1 whereas 
the response at w2 is greater than the response at w1 for a, = 0.02 and I / &  = 50 (seen 
earlier in figure 7). Thus, it appears that both the proximity of the cloud natural 
frequencies to 0. 5wb and the void fraction influence the relative amplitudes of 
oscillation at w1 and w2. 

The effect of changing the viscous and surface tension parameters is illustrated in 
figure 10 for the fundamental harmonic. This contains a comparison between the 
frequency response for the ocean conditions and the response for the water tunnel 
conditions noted earlier. Larger viscous and surface tension parameters (at water 
tunnel conditions) tend to inhibit bubble oscillations and so the response curves for 
ocean conditions exhibit sharper peaks and troughs. 
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fundamental harmonic: IRJR,(X = 0) and IP,l/w; Ri(X = 0) for the fundamental harmonic are 
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S/pw,2 R: are for the water tunnel (-) and the ocean (----) conditions. 

5. A semi-infinite layer with bubble size distribution 
Most of the research efforts in modelling bubbly mixtures so far have assumed 

bubbly mixtures of identical bubbles. In most practical circumstances, uniformly sized 
bubbles are very difficult if not impossible to achieve. Moreover, cavitation nuclei in 
water have a distribution of bubble sizes ranging over several orders of magnitude 
(Gates & Acosta 1978). 

In this section, we present a weakly nonlinear model of flows of such bubbly 
mixtures. Since the flow now has a number of length and time scales in terms of the 
bubble radii and their natural periods, we can expect different mechanisms causing 
interactions between the different timescales. We shall find a new mechanism for 
frequency dispersion called harmonic cascading. 

In this solution we assume that the bubble number density distribution, y(R,), is 
known and that it is piecewise uniform. A continuum of bubble radii is assumed. Then, 
the number of bubbles per unit liquid volume with equilibrium size between R, and 
R, + dR, is q(R,) dR,. The volume of bubbles per unit liquid volume is 

where the volume of the bubble, T ,  is given by (17) and R, and R, are minimum and 
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maximum equilibrium bubble radii present in the layer. Thus, the number of bubbles 
per unit total volume with equilibrium radius between Ro and R, + dR,, can be written 
as 

(42) q*(R,) dR, = q(R,) (1 -a) dR, = 
dR0 

q%Ki. R m  

Substituting the expansion (17) into (41) we obtain 

where (44) 

We use a dispersed-phase number continuity equation (DPNC) to ensure mass and 
number conservation. Assuming the liquid to be incompressible, it follows that if the 
bubbles are neither created nor destroyed then 

~ ~ y * ( R O ) d R O + ~ ~ M y * ( R o ) d R o  Dt R, ax R, = 0. (45) 

Assuming that the number density per unit total volume is conserved, (45) reduces to 

and the corresponding momentum equation is 

DU ap 
p(l -a)- = -- 

~t ax' (47) 

The solution to the problem represented by (3), (42), (46) and (47) was solved in 
Lagrangian coordinates, X and T, using a method parallel to that described in $4. The 
above equations ((46) and (47)) become 

and (49) 

Using (41)-(44) it can be seen that the simplified form of the DPNC equation (46) and 
the momentum equation (47) depend upon the integral measures of the bubble volume 
oscillations and bubble size distribution, A,, and not on the bubble size distribution 
density q(Ro). The approximate solution to the Rayleigh-Plesset equation (6) can be 
used to express the A ,  as functions of the P,. Thus we have three unknowns - pressure 
oscillation, flow velocity and the integral measure, A,, to be solved from three 
equations. Following a methodology very similar to that in the $4, these three 
equations are used to obtain the following governing equation for the pressure 
oscillations in the layer (Kumar 1991): 
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where 

Equation (50) has the following approximate solution (accurate to the second order 
and obtained in manner similar to the solution to (24) given by (26)): 

Using the solution given by (57) and the momentum equation (Kumar 1991) the 
following relation for the conditions at the wall may be obtained: 

v W 0 )  = v' w, - R3, (59) 
where 7' is the total number of bubbles per unit liquid volume and Rh is the radius of 
the bubbles. It can be seen that the above result reduces to that for identical bubbles. 

For illustration we examine a bubble layer containing bubbles of radii between 10.0 
and 100.0 pm under the water tunnel conditions. The largest natural frequency of the 
bubble and the largest bubble radius present in cloud are convenient choices for the 
reference frequency, w, and the reference lengthscale, 1, , respectively. In the sample 
calculations the coefficients, #'(n), f ( n , j )  and O'(n,j) were evaluated using (54), (55) 
and (56) respectively. The integrals were evaluated numerically using the trapezoidal 
rule and Richardson extrapolation was used to estimate the value of the integral for 
zero step size. The parameters A,, pl(n, j )  and p,(n,J] were calculated from (8), (9) and 
(lo), and A,, @(nJ and e(n,J] could then be calculated using (51)-(53). Equation (58) 
was then solved using a Newton-Raphson scheme to calculate the constants c, for a 
given amplitude of wall oscillation, X,(O)/l,. Knowing c,, the amplitude of pressure 
oscillation could be calculated from (57). Using this solution, the values of Rn/Ro were 
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FIGURE 11. The frequency response of a bubbly layer with a given size distribution of bubbles: 
IP,l/o," t ( X  = 0) is plotted against the frequency ratio, nS/o,,  for the first two harmonics ([l], [2]) and 
the linear solution ([L]) for m = 3. X%(O)//? = 0.0002, a, = 0.05, and ambient conditions are for 
the water tunnel. 

calculated for different values of R, using (34) and the amplitude of R,/Ro is checked 
to ensure that it is less than unity. Note that (58) is similar in structure to (6) and also 
its solution is non-zero only at harmonics of the excitation frequency. Once again 
calculations of up to 20 harmonics were found to be sufficient. 

Numerical results were computed for a number of typical cases. For each case the 
results were obtained for the size distribution density parameter, m = 2,3,4 (see (1)) 
and the value of N* was adjusted to obtain the required value of the void fraction. It 
is important to note that a larger value of m implies increasing the number of small 
bubbles relative to the number of large bubbles. The results for six different cases were 
obtained in order to investigate the effect of changes in void fraction, ambient 
conditions and amplitude of wall oscillation. 

A typical frequency response of the cloud is shown in figure 11 for the water tunnel 
conditions (table 1). This illustrates the features of the frequency response common to 
all cases. The amplitude of pressure oscillation for the fundamental and the second 
harmonic, which are marked [l] and [2] respectively, as well as the solution obtained 
from the linearized analysis, which is marked [L], are shown. Amplitudes of higher 
harmonics were found to be negligible. The frequency ratio is the ratio of the actual 
frequency at which the response occurs to the reference frequency, in the same way as 
figure 3 was constructed. It is seen that the amplitude of first harmonic of pressure 
oscillation increases with increasing excitation frequency. The reason for this is that 
there is a larger number of smaller bubbles, for which the natural frequency of the 
bubble is larger. Thus for larger frequency ratios (excitation frequencies) a larger 
number of bubbles are excited at their natural frequency thus leading to an increase in 
the amplitude of the pressure oscillation. The sub-resonant excitation of small bubbles 
and super-resonant excitation of large bubbles also contributes to an increase in the 
amplitude of pressure oscillation. A kink can be seen in the fundamental harmonic at 
an excitation frequency of w, (figure 11). This is because, for excitation frequencies 
larger than w,, the pressure oscillation is caused solely by the super-resonant excitation 
of bubbles in the layer. 

Figure 12 presents the amplitude of pressure oscillation for the first and the second 
harmonic as a function of the frequency ratio, o / w ,  and the distance from the wall, 
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FIGURE 12. The frequency response of a bubbly layer with a given size distribution of bubbles: 
IPJw," for the (a) first and (b) second harmonic is plotted against the distance from the wall, X / l +  
and frequency ratios (a) wJwr and (b) 20,/0,, respectively. Xn(0)/l, = 0.0002, a, = 0.05, rn = 3 and 
ambient conditions are for the water tunnel. 
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FIGURE 13. The effect of variation in the bubble size density distribution slope, m, on (a) the first and 
(b) the second harmonics: JP,l/o,Z e ( X  = 0) is plotted against frequency ratios (a) wflwr and (b) 2w,/w, 
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X/l?.  It is quite clear that the pressure oscillation decays rapidly away from the wall, 
decaying to very small values at a distance of 41, from the wall. The response was also 
seen to decay rapidly away from the wall for a semi-infinite layer of identical bubbles. 

When the wall is oscillated at a frequency, of, bubbles with their natural frequency 
equal to of are excited with the largest amplitude. Because of the nonlinearity present 
in the system, the flow variables oscillate at the harmonics of the excitation frequency, 
of. Thus, the pressure oscillation at 213, excites bubbles with the natural frequency 
equal to 2w, and since, the number of bubbles with the natural frequency, 2w,, is larger 
than the number of bubbles with the natural frequency, of, the response resulting from 
the bubbles with natural frequency 20, may be significant and may be larger for larger 
values of m. In other words, the excitation may cascade towards higher frequencies. 
This means that an excitation at small frequencies may elicit a strong response at high 
frequencies. We shall refer to this mechanism as harmonic cascading. 

The ratio of the amplitude of the second harmonic to the amplitude of the first 
harmonic increases for larger values of the parameter m (figure 13). This could be 
expected from the above description of the mechanism of harmonic cascading. Note 
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that the linear solution is larger than the first harmonic (figure 11) and the difference 
between the linear solution and the first harmonic is also seen to be larger for larger 
values of m. For excitation frequencies larger than the reference frequency, wT, the 
amplitude of the second harmonic is very small and the difference between the linear 
and nonlinear solutions is also very small (figure 11). This could be anticipated since 
w, is the highest natural frequency present in the cloud and the effect of harmonic 
cascading is expected to decrease for wall oscillation frequencies larger than 0 . 5 ~ ~ .  For 
excitation frequencies up to 0.5wr, harmonic cascading remains an important effect 
with the amplitude of second harmonic becoming larger than the amplitude of first 
harmonic for rn = 4. For excitation frequencies larger than 0.5w,, the increase is due 
to the collective response of the bubbles to the excitation. It also appears that an 
increase in the value of rn reduces the amplitude of the first harmonic and affects the 
second harmonic only weakly (figure 13). For a given value of the void fraction, the 
number of bubbles is larger for larger values of m and the reduction in the amplitude 
of pressure oscillations may be caused by the increased damping in the system due to 
the larger number of bubbles. The weaker response for increased void fraction for a 
layer of identical bubbles may also be caused by an increase in the number of bubbles. 
Note that the amplitude of the second harmonic is not strongly affected by changes in 
the value of m. 

The effect of changes in ambient conditions on the frequency response is not a strong 
one. However, it does appear that the ocean conditions do promote slightly stronger 
harmonic cascading. This may be explained as follows. The super-resonant excitation 
of the bubbles which have natural frequencies less than the excitation frequency 
contributes significantly to the amplitude of the fundamental harmonic and this is not 
strongly influenced by the reduction in the viscous and surface tension parameters for 
the ocean conditions. However, bubble dynamics play a stronger role in the generation 
of the second harmonic through harmonic cascading and thus an increase in the 
amplitude of the second harmonic (with reduced effect of viscosity and surface tension 
at the ocean conditions) may be expected. Hence, stronger harmonic cascading can be 
expected for the ocean conditions. An increase in the amplitude of wall oscillation was 
seen to simply increase the magnitude of the response without any changes in the 
features of the frequency response. 

6. Limitations 
In this section we shall examine the various limitations of the present model. The 

limitation imposed by the continuum mechanics model have been discussed in detail by 
d’Agostino & Brennen (1988) and so we focus here on additional considerations 
necessary in the present analysis. 

First, the amplitude of the radius oscillation is required to be small; in particular, 
IR,/R,I + 1 must be satisfied. This is also implied in confining the solution to the 
oscillation of gas bubbles. Moreover, the effect of damping is also reduced for large 
bubbles. These restrictions place an upper limit on the excitation for the present 
analyses. In practice, IR,/R,J % 1 is expected to dictate the maximum applicable 
excitation for which the theory remains applicable. 

The range of void fraction over which the present theory may be applied is also 
bounded on an upper and a lower limit. The lower limit of the void fraction is 
determined by the maximum bubble separation required under the continuum 
assumption as well as the requirement of maximum permissible amplitude of radius 
oscillation, ~RJR, ,~.  The upper limit on void fraction is determined by the requirement 
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of local pressure disturbance to be negligible in comparison to the global pressure 
oscillation (d’Agostino & Brennen 1988). 

The phenomenon of rectified diffusion results in slow growth of the equilibrium size 
of a bubble (Hsieh & Plesset 1961). Thus, the theory can be applied to bubbly layers 
subject to steady-state oscillation for long periods only if the equilibrium size, R,, is 
tracked and the values appropriate to a particular time are employed. 

7. Some practical observations 
Though limited to small-amplitude oscillations and thus to a small excitation, the 

qualitative phenomena uncovered here are valuable to bear in mind when interpreting 
some of the practical observations of the response of bubbly mixtures. In particular, 
harmonic cascading should be present in many practical situations. Measurements of 
spectra reported by Mellen (1954) and Blake (1986) appear to contain peaks which may 
be due to harmonic cascading. The results of Arakeri & Shanmuganathan (1985) do 
not exhibit harmonic cascading. However, that may be due to lack of variation in the 
size of bubbles generated by electrolysis. It may be important to keep this in mind while 
designing experiments for evaluating interactive effects in bubbly mixtures. It is 
particularly important to note that most of the spectra reported in the literature have 
been made using half-octave frequency resolution. Clearly, a finer spectral resolution 
in the spectra measurement is required in order to unambiguously resolve harmonic 
cascading. 

8. Summary and conclusions 
In this work we have studied some of the nonlinear effects which can occur when a 

plane wall bounding a bubbly liquid oscillates in a direction normal to itself. The 
principal results may be summarized as follows. 

The presence of a finite lengthscale such as the finite thickness of the bubble layer 
results in characteristic natural frequencies of the bubble layer (known as cloud natural 
frequencies), all of which are less than the bubble natural frequency, wb. The natural 
frequencies are determined mainly by the void fraction and the ratio of thickness of the 
layer to the bubble radius. The dominant response occurs for excitation at the lowest 
cloud natural frequency and the response is dominated by the first- and second- 
harmonic components. Since the amplitude of the second harmonic is significant, not 
all of high-frequency response is damped out (in contrast to the results from linearized 
analysis). The amplitude of the response increases as the lowest natural frequency gets 
closer to about 0 . 5 ~ ~ .  The cloud natural frequencies become very small when the ratio 
of layer thickness to bubble radius becomes large and the resulting frequency response 
tends to that for a semi-infinite layer. 

For excitation frequencies in the sub-resonant and trans-resonant regimes (w < wb), 
the amplitude of oscillation forms standing wave patterns in the layer. The amplitude 
of these waves decays slowly with distance from the oscillating wall. However, for 
super-resonant excitation the oscillation amplitude decays rapidly with distance from 
the source of excitation (wall). This rapid decay is caused by the reduced role of bubble 
dynamics in the super-resonant regime in which the bubbly layer behaves like a 
homogeneous compressible fluid. 

The phenomenon of harmonic cascading is seen to take place in a bubbly mixture 
containing bubbles of different sizes. Harmonic cascading occurs when a low- 
frequency excitation applied to the layer at a frequency wf results in a large amplitude 
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of oscillation at the frequency 2wf due to the presence of a large number of bubbles with 
natural frequency of 2w,. The ratio of the amplitude of the second harmonic to the 
amplitude of the first harmonic defines the extent of harmonic cascading. This ratio 
increases with an increase in the number of bubbles with small radii relative to the 
number of bubbles with large radii. It is noteworthy that the phenomenon of harmonic 
cascading can only be modelled by a nonlinear model because the linearized models do 
not allow for such harmonic generation. In view of the results from this analysis, other 
kinds of links among timescales such as among subharmonics of different bubble,sizes 
must be take into account for strongly nonlinear solutions of bubble clouds. 

Larger values of the void fraction cause a reduction in the amplitude of pressure and 
radius oscillation in all cases. This may imply reduced acoustic noise in the bubbly 
mixtures and damage potential in cavitating flows. The reduction of acoustic noise for 
larger void fraction has been observed experimentally by Arakeri & Shanmuganathan 
(1985). Furthermore, the larger number of bubbles present at large void fractions may 
cause stronger dissipation and a reduced amplitude of oscillation. 

The authors are grateful for the support of Office of Naval Research under contract 
NOOO167-85-K-0165. The authors are also grateful to the reviewers for their helpful 
comments and suggestions included in the paper. 
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